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A method is proposed for evaluating the boundary between quasistatic and dy- 
namic regimes of vapor bubble growth and separation. The pressure boundary 
is evaluated on the basis of data on the boiling of cryogenic liquids and 
water. 

It is known that the character of separation of vapor bubbles from a heat-emitting sur- 
face during the nucleate boiling of liquids depends on the corrected pressure [1, 2]. Formu- 
las for the radius of the bubbles at separation in the case of low pressures are determined 
by solving a dynamic problem, while the formulas for the case of high pressures are found by 
solving a problem of hydrostatics without allowance for dynamic effects. 

The boundary between the dynamic and quasistatic regimes of bubble separation deter- 
mines the region of applicability of the respective formulas and the boundary between the 
"low" and "high" pressures for boiling. The presence of such a boundary is seen in analyz- 
ing the dependences of internal boiling characteristics on pressure. For example, thedepen- 
dence of bubble separation radius R d on pressure changes its character at p/pb~0.01-0.02, 
while the frequency of separation of bubbles from the heat-emlttlng surface f at p/pb~0.005 
increases with an increase in pressure and at p/pb~O.05 decreases with an increase in 
pressure [i]. The difference in the functions Rd(P) and f(p) at low and high pressures can 
be attributed to the predominant effect on the vapor bubbles of the forces associated with 
the inertial reaction of the liquid and surface tension, respectively [3]. 

We will evaluate the boundary value of pressure p, from the corresponding boundary value 
of the temperature head AT,, which is found from comparison of the main forces acting on the 
vapor bubbles. As the bubbles grow, they are acted upon by buoyancy and by forces which keep 
the bubbles at the heating surface [3]: surface tension 

F~ = 2~aRc (i)  

and the inertial reaction force of the liquid 

= T (2) 

The radius of the microcavity R c from which the bubble originates can in a first approxima- 
tion be assumed to be proportional to the critical radius of the vapor nucleus 

Re= B 2~ (3) 
LPvAT 

where, according to empirical data, the numerlcal coefficient is on the order of i0 [2]. Sup- 
posing that the bubble grows in accordance with the law R - ~T t / a ,  we write the bubble- 
growth modulus ~ as follows 

\ pvLa ] 

where for low pressures C~ = 2~/3, n~ = 1 [4] and for high pressures C8~ 4, ng =0.5 [5]. 

We will take as the boundary value that value of AT, which at the given p ensures the 
equality Fu = F I (conversely, we will consider the boundary value of Ap, to be that pressure 
which corresponds to the thus-determined AT,). In the evaluation, we may cake the following 
for the drag acting on the g~owing bubble [3] 
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Fig. i. Dependence of the temperature heads ATo and AT, 
on pressure for hydrogen (a). nitrogen (b), and oxygen 
(c): a) ATo: i) data from [6]; 2) averaged curve from 
the data in [6]; AT,: 3) calculation of 8 in [5]; 4) 
calculation of 8 in [4]; b) ATo: i) data from [7]; 2) 
averaged curve from the data in [7]; AT,: 3) calcula- 
tion of 8 in [5]; 4) calculation of 8 in [4]; c) ATo: 
i) data from [ 7 ] ;  2) averaged curve from the data in 
[7]; AT,: 3) calculation of 8 in [5]; 4) calculation of 

in [4]. AT, ~ p, i0 s Pa. 

TABLE i. Pressure Boundary between Quaslstatic and Dynamic 
Regimes 

Liquid 

Hydrogen [6] 
Nitrogen [7] 

xygen [q] 
Water [8] 

...... ~ from [5]  ..... ~ from [4]  

p,, lOt Pa 

0 , 2 8  

0,55 
0,67 
5,3 

P*IPb 

0,021 
0,016 
0,013 
0.024 
0,018 

p,, I0~ Pa 

0,35 
1,0 
1,2 
4,0 

P.lP b 

0,027 
0,029 
0,024 
0,018 
0,024 

Pb 

0,024 
0,0225 
0,0185 
0,021 
0,022 

F,, = 10nvp[~ ~'. (5) 

(2) and (5) shows that F << F I and that for approximate calcula- However ,  c o m p a r i s o n  o f  Eqs .  
t i o n s  the q u a n t i t y  F~ can  be  i g n o r e d ,  which  s i m p l i f i e s  o u r  c a l c u l a t i o n s  c o n s i d e r a b l y .  

Having equated Eqs. (i) and (2) with allowance for (3) and (4), we obtain 

= {  12B "~4nfj+l(02Tst4n~+l (LPv) 4"~+1 a 4n~+1 
AT, i 

The i n t e r s e c t i o n  o f  t h e  c u r v e  o f  AT,(p)  w i t h  t h e  c u r v e  o f  t h e  b e g i n n i n g  o f  b o i l i n g  
ATo(p) gives the boundary value of p* for the beginning of boiling (for the regime of single 
bubbles). It should be noted that the overwhelming majority of experimental and theoretlcal 
studies of vapor bubble growth and separation have been conducted specifically for single, 
noninteracting bubbles. 

Figure 1 shows the relatlon of AT, for several cryogenic liquids calculated from Eq. (6) 
for B = 10 and from the growth models of Labuntsov [5] and Plesset--Swick [4]. The same fig- 
ure shows the experimental functions ATo (p). The boundary value of the absolute p, and cor- 
rected P*/Pb is shown in Table i, which also contains data for water determined in a similar 
manner. Here, the estimation with calculation of 8 from the Labuntsov formulas gives an ap- 
proach from the dlrectlon of the quasistatic regime, for which this formula is also valid. 
Calculation using the Plesset--Swlck formula gives an approach from the direction of the dy- 
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namic regime [2]. The set of values of p and AT between these two curves can be grouped as 
a transitional regime. It is evident that the different methods of estimation lead to simi- 
lar values of boundary pressures: it can be assumed that on the average p, = (0.02 • 
0.01)Pb, as was proposed in [2]. 

The value of AT, can be estimated more accurately if it is determined not from the con- 
dition F I = F o but rather from the condition F I = AFu, where A>>I to estimate the boundary 
of the dynamic regime and A<<I to evaluate the quasistatic regime. For approximate calcula- 
tions it is evidently sufficient to consider the coefficient A equal respectively to 3 and 
1/3, which produces a 25% shift in the boundary when B is evaluated after Plesset--$wick and 
44% when it is evaluated after Labuntsov. This does not significantly affect the result ob- 
tained. Whereas the extreme values of P*/Pb shown in the table are equal to 0.013 and 0.029, 
in the more accurate evaluation they would change by 0.006 and 0.035. The latter values, 
incidentally, are near those which delimit the intermediate region of the pressure depend- 
ence on bubble separation frequency or growth time. These quantities change only slightly 
in this region [i, 2]. 

Thus, for the regime of single bubbles, the boundary value of pressure at which dynamic 
or static forces begin to predominate is p*/pb~ 0.02. At p,/Pb~0.005~ the regime of bub- 
ble growth and separation can be considered purely dynamic. At P*/Pb > 0.03-0.04, it can be 
considered quaslstatic. In particular, it follows from this that in analyzing vapor bubbles 
of water boiling under atmospheric pressure (P/Pb ~ 0.0045), one cannot use the formulas ob- 
tained by solving static bubble-growth problems -- such as the Fritz formula -- as is done in 
the literature. 

It should be noted that at AT > ATo the boundary between the dynamic and quasistatic 
regimes of bubble growth and separation will be shifted in the direction of higher pressures. 
In the figures all of the point lying to the left and above the curves of AT,(,) correspond 
to conditions whereby there is a dynamic regime (region of low pressures). The points lying 
to the right and below correspond to a quasistatic regime (region of high pressures). The 
differences in the dependences not only of the internal, but also the integral characteris- 
tics of boiling on the regime parameters at high and low pressures -- such as in the rela- 
tions between heat-transfer coefficient and heat flux and pressure -- are also evidently con- 
nected with differences in the dynamics of the vapor bubbles on both sides of the boundary 
[91. 

NOTATION 

A, B, C~, coefficients; a, diffusivity, me/sac; F I, Fo, F~, forces, N; L, heat of va- 
porization, J/kg; n, uS, exponents; p, pressure, Pa; Ts, Tq saturation temperature and tem- 
perature of the heat-emltting surface, ~ AT = T a --Ts, temperature head, ~ R, radius, 
m; f, frequency of separation, sec-~; 6, growth modulus, m/secl/2; A, thermal conductivity, 
W/m.deg; o, surface tension, N/m; p, Pv~ density of liquid and vapor~ kg/m3; ~, kinematic 
viscosity, m~/sec; T, time, sac. Indices: 0, beginning of boiling; * boundary between 
quasistatic and dynamic regimes; b, critical point; d, separation; c, cavity. 
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HEAT TRANSFER OF A VERTICAL BI~DLE OF HEAT-RELEASING RODS 

IN THE ABSENCE OF CIRCULATION OF THE HEAT CARRIER 

M. A. GoCovskli, E. D. Fedorovlch, 
V. N. Fromzel', and V. A. Shleifer UDC 536.3:536.25 

A method is presented for approximate calculation of conductive--radiative heat 
transfer in bundles of heat-releasing rods, and an empirical estimate is given 
of the effective thermal conductivity. 

It has recently become necessary to develop methods of calculating heat transfer in 
bundles of heat-releasing rods in the absence of circulation of the heat carrier (coolant). 
This problem has arisen in connection with the storage and transport of spent fuel assem- 
blies. 

Below we examine a system of vertically positioned fuel rods placed in a shell. The 
greatest difficulty in calculating the temperature regime is presented by allowing for the 
effect of natural convection. This problem can be solved only by using experimental data. 
In the limiting case of the absence of natural convection, if we ignore end effects, we come 
to a two-dimenslonal problem of conductive-radiative heat transfer. Its solution in an ex- 
act formulation presents serious problems in connection with the exceptional awkwardness of 
the calculations. 

To approximately solve the a b o v e  problem, we will assume that the thermal conductivity 
of the rods is great enough so that we can assume a constant temperature about the perimeter. 
We will also assume that the temperature of all of the rods in one row (Fig. i) is the aame, 
which allows us to examine heat flow only from one row Co another. These simplifications 
made it possiblej without serious complications, to superimpose the conductive and radiative 
heat flows. 

First we will examine the radiative heat flow. If we move in the direction of the heat 
flow, we find that the rods of each row i interact mainly with the rods of the row i + 1. 
The rods of row i also interact with the rods of row i + 2 although with considerably lower 
values of reciprocal surface. These three rows constitute an open system of three gray bodies. 
The radiative heat-transfer problem in such a system is fairly complex. We will therefore 
introduce a simplification which consists malruly of the assumption that the row i + 1 can be 
approximately regarded as a shield between the i-thand i + 2nd rows. Supposing that the 
shield reduces heat flux by a factor of two, instead of examining the interaction between 
the i-th and i + 2nd rows we will examine the interaction between the i-th and i + 1st rows, 
but we will have increased the reciprocal surface Hi,i+s by a factor of two and added it to 
the reciprocal surface Hi,i+~. This permits us to reduce the problem to examination of the 
interaction of two gray bodies. Using the familiar relations from [I] to solve thls problem, 
we obtain the following formula for the radiant heat flow between the rows for the condition 
of equality of the emissivities of the radiating surfaces: 
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